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SUMMARY

Contract F49620-91-C-0096, "Application of Wavelets to Automatic Target Recognition,"
is the second phase of a multiphase project to insert compactly supported wavelets into an existing
or near-term Department of Defense system such as the Longbow fire control radar for the Apache
Attack Helicopter. In this contract, we have concentrated mainly on the classifier function. During
the first phase of the program (Contract F49620-90-C-0050, "Application of Wavelets to Radar
Data Processing'"), Martin Marietta demonstrated the feasibility of using wavelets to process high
range resolution profile (HRRP) amplitude returns from a wide bandwidth radar system. During
this phase, Martin Marietta, with Fast Mathematical Algorithms and Hardware, Inc., as a
subcontractor, obtained fully polarized wide bandwidth radar HRRP amplitude returns and
processed them with wavelet and wavelet packet (or best basis) transforms. Then, by
mathematically defined nonlinear feature selection, we showed that significant improvements in the
probability of correct classification are possible, up to 14 percentége points maximum (4
percentage points average) improvement when compared to the current classifier performance.

In addition, we addressed the feasibility of using wavelet packets' best basis to address
target registration, man-made object rejection, clutter discrimination, and synthetic aperture radar

scene speckle removal and object registration.

I. Technical Problem

Modemn airborne fire control radar (FCR) systems must provide rapid, accurate, and
automatic detection and recognition of targets to flight crews in adverse weather with minimal false
alarms to improve their survivability in battlefield environments. Typical automatic target
recognition (ATR) algorithms for a real-beam millimeter wave (MMW) radar begin with high range
resolution profiles (HRRPs) with 1- to 2-foot resolution or range cells. These HRRPs are the
magnitude of the Fast Fourier Transform (FFT) coefficients of the transmitted and received wide
bandwidth frequency spectrum input from each of several radar polarizations. After registration to

center the HRRPs in the processing range bin, features are extracted and used in algorithms for




target/clutter discrimination, target/man-made object (MMO) rejection, and target classification,

usually in that order. This processing flow is shown in Figure 1.

15 >
i steati Clutter MMO i
FFT HRRP |—»{ Registration Discrimination|>] Rejection [ Classifier Tracker
Q)

AR045-0022-01
Figure 1. High Range Resolution Processing Flow

In most cases, the dimensionality of the feature space is large, which severely restricts
practical application of pattern recognition schemes. It is expected that compactly supported
wavelet transforms can be applied efficiently to compress the HRRPs while retaining relevant
_information, reducing feature vector dimension, and allowing more powerful ATR algorithms.

The task addressed in this effort was to show the feasibility of effectively processing full
polarimetric HRRP MMW data vectors from various targets obtained from turntable and flight
sensors using wavelet-based transforms. The processed vectors were then used to obtain more
useful and robust wavelet feature vectors for target classification. As time allowed, we addressed
applications of the methodology to favorably impact target registration, target/clutter

discrimination, target/ MMO rejection, and synthetic aperture radar (SAR) data processing.

II. General Methodology
The general methodology used in this project was to first transfer wavelet and wavelet
packet technology from Fast Mathematical Algorithms and Hardware (FMA&H) to Martin Marietta
through interactive workshops. Then, wavelet theory was applied to an analysis of validated
turntable and field-measured radar data to determine the impact of wavelet processing on radar
classifier performance. The figure of merit used to measure this performance was the classifier's
probability of correct classification (Pcc). To ensure comparable performance, we used the exact

same training and testing data sets and compared results at each step of the wavelet-based process




with results obtained using then-current Longbow classifier algorithms. This approach ensured an
accurate comparison relative to the current baseline Pcc of the Longbow fire control radar (FCR)
system. The analysis was performed on the extensive, validated Longbow radar database that
consists of target-on-turntable data and data from many flight tests.

To collect turntable data, the radar was located in a roof-house overlooking the Martin
Marietta radar range. The targets were mounted on the center of a turntable that rotates and tilts
under operator control to give near-hemispherical signatures. As the range from the radar to the
target was fixed and centered in a given range bin, it was necessary to shift the coherent return in a
circular fashion within their range bins, to simulate flight data. For this data collection, the clutter
was suppressed more than 20 dB below the target signature. Therefore, coherent flight clutter data
collected from Ft. A.P. Hill in Maryland was coherently embedded in the target signature data at
various clutter levels and ranges to simulate real flight data. This target-on-turntable database was
used for the initial classifier analysis.

Flight target data with naturally occurring clutter was then added for the design, training,
and testing of classifier algorithms that showed promise. That is, some flight target data was used
in addition to turntable data as part of the classifier training database, and other independent flight
target data became the final database for the classifier. Flight data was used exclusively for MMO
algorithm design and testing (since the MMO observations were from flight data) and for
target/clutter discrimination (since this analysis requires huge numbers of radar looks at different
clutter scenes).

Although this report deals primarily with wavelet target classification, it also addresses the
feasibility of using wavelets for target registration, target/clutter discrimination, target/ MMO
rejection, and SAR processing. Target registration takes HRRP range cell data and positions this
data in the center of the range bin, where a range bin can be typically 64 feet long and a range cell
is one foot long. Registration needs to be consistent over large clutter levels. Since target
registration precedes the target/clutter discrimination, target MMO rejection, and target classifier

algorithms, improvements in registration were expected to lead to improvements in each of these




three pattern recognition areas. Wavelet processing of two-dimensional SAR images was also
explored with the assistance of FMA&H to determine the feasibility of using wavelets to reduce

SAR speckle (noise) and improve target registration.

III. Technical Results

This project produced a wavelet classifier consisting of a three-class quadratic classifier that
uses 48 wavelet coefficients produced by selecting 16 wavelet coefficients from the transform of
the HRRP for each of three radar polarizations. Using turntable data and coherently imbedded
clutter, the wavelet classifier yielded a classifier Pcc as shown in Table 1. The wavelet value was a
maximum of 12.9 percentage points higher, and when averaged over all clutter levels and target
ranges, was 6.8 percentage points higher than the Longbow baseline classifier Pcc. With flight
target data, the wavelet classifier yielded a classifier Pcc that was a maximum of 14 percentage

points higher, and when averaged over all clutter levels and targét ranges, was 4 percentage points

higher than the Longbow baseline classifier Pcc. This wavelet classifier requires only slightly more

computations than the Longbow baseline classifier.

Table 1. Summary of Improvement for Radar Classifier Using
Compactly Supported Wavelets

Improvement (%)
Type Of Data Maximum | Average | Minimum
Turntable Target with Added Flight Clutter 12.9 6.8 3
Proof of Principal System Flight Data 14.0 4-6 +0
Full Scale Development System Flight Data T8D TBD TBD

Figure 2 presents the relative Pcc improvement in percentage points for three levels of

clutter (light, moderate and heavy) and three relative ranges (close, medium and far). Clutter for the

results shown in the figure was acquired from Ft. A.P. Hill. Figure 3 presents relative P¢c
improvement in percentage points using the proof of principle (POP) flight data from four sites and

two relative ranges.
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Figure 2. Turntable Performance Enhanced by Wavelet Classifier
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Figure 3. Flight Data Enhanced by Wavelet Classification

The classifier algorithms were tested against turntable target data with coherently imbedded
clutter from Ft. A.P. Hill. The flight target data was acquired with the POP radar at four test sites:
Aberdeen Proving Grounds (APG), Ft. Hunter-Liggett (HL), White Sands Missile Range
(WSMR), and Yuma Proving Grounds (YPG). The MMO algorithms were tested against POP

flight MMO and target data from the same four test sites.




The 48-dimensional wavelet quadratic classifier was tested on the Longbow flight data and
at first yielded Pcc results that were about 2 percentage points higher the Longbow baseline
classifier's Pcc. Several discussions were held with FMA&H and Longbow personnel about
wavelet approaches. Then, many techniques were applied to further improve this wavelet Pcc. The
best approach used clustering branching logic preceding the fusion (by sensor fusion type logic) of
a 42-dimensional wavelet quadratic classifier with a profile matching (nearest neighbor) classifier.
Based on sample size weighting of the testing data files, this classifier yielded an average Pcc that
was 6 percentage points higher than the Longbow baseline classifier's Pcc. If the average Pcc is
computed by weighting the different target class Pcc values equally, this wavelet classifier has a
Pcc that is 4 percentage points higher than the Longbow baseline classifier's Pcc. This wavelet
classifier requires approximately the same number of computations as the Longbow baseline
classifier.

One drawback to these wavelet classifiers is that they happen to be somewhat biased
toward two of the three classes, at the expense of the third. That is, the P¢c for class three tends to
be lower than the P values for classes one and two. Since the Longbow baseline classifier was
more balanced among the three classes, we decided to use a modified version of a wavelet fusion
classifier. Using a modified version of the wavelet fusion classifier that forced a balance of the
classes similar to the baseline classifier, a preliminary look showed an average Pcc that was only 3
percentage points higher than the average baseline Pcc. This approach requires approximately the
same number of computations as the Longbow baseline classifier.

Target registration prepares for pattern recognition algorithms by electronically moving the
HRRP to the center of the range bin. Since registration precedes the detection and discrimination
algorithms, registration algorithm performance has a great impact on the algorithms. Because
significant time (several hours) is required for registration of the training data, faster methods of
evaluating registration algorithms were investigated and two were defined. One wavelet registration
algorithm performed better than the Longbow baseline registration method in this sense. However,

this wavelet registration method dropped the average Pcc by 1 percentage point.




The other fast method measured how well the registration method finds the known center
of the turntable. In the Longbow turntable data files, the target HRRP has been randomly shifted
so that the center of the HRRP is generally not the center of the turntable and different levels of
clutter have been added to the target; however, it is possible to retrieve the original center of the
turntable position in this shifted HRRP for registration testing purposes. An experiment was
conducted where the targets were always centered in the HRRP range bin. When the Longbow
baseline classifier was trained and tested on data using a registration method that always picks the
true center of the turntable, an average P¢cc improvement of 9.16 percentage points resulted. Then,
a second wavelet-based registration algorithm, which was also better than the Longbow baseline
registration algorithm in this sense, showed some improvement in classifier average Pcc. Since this
evaluation method requires about 1.5 minutes of computer time to run while the classifier requires
several hours run time, it appears that this evaluation method is a suitable fast registration
evaluation tool. This experiment indicated the potential for large ATR performance improvements if
registration can be significantly improved, especially if the registration accurately estimates the
physical center of the target.

The target MMO rejection algorithm can be considered a two-class classifier problem, with
one class being non-target MMOs and the second the targets. When the 48-dimensional wavelet
quadratic classifier was first applied to the two-class, target versus MMO problem, the average Pcc
for this algorithm was 4.4 percentage points higher than the Longbow MMO baseline. Using a
different selection of wavelet coefficients and a few wavelet packet coefficients, a new wavelet
quadratic MMO algorithm was produced with a P¢c that was 7.5 percentage points above the
Longbow baseline. This new wavelet MMO algorithm is approximately one-third as complex as
the Longbow baseline MMO algorithm.

Lincoln Labs and Sandia Labs provided synthetic aperture radar (SAR) data that was
processed by wavelet methods. Wavelet processing did show some capability to clean up or
remove noise from SAR imagery. Also, SAR images and simulated SAR images were processed

by two-dimensional wavelet transforms. The resulting coefficients were used in a wavelet target




registration algorithm to register the SAR image. This wavelet registration procedure did show

promise on both the real SAR data and the simulated SAR data.

IV. Implications for Further Research

The preliminary success of applying wavelets to the various parts of the radar signal
processing, classification, and detection algorithms suggests strongly that a rigorous effort should
be funded to optimize and insert wavelet-based processing into the Longbow FCR as part of their
product improvement program. Further, serious analysis and application should be undertaken to
extend this methodology to the other parts of the process, including the registration, MMO
rejection, and clutter discrimination algorithms. Since wavelet processing has already shown
significant classifier and MMO performance improvements without increased processing
complexity, it is expected that similar results will be obtained for the registration and clutter
discrimination algorithms. Optimizing these approaches would require investigation of additional
wavelet bases and wavelet packet approaches. Tests would need to be performed using data from
the production FCR system.

Wavelets show promise for data compression while conserving relevant information in an
entropy sense. This characteristic implies that wavelet-based compression could permit rapid
transmission of time-critical data over existing data links. Also, additional measures of merit that
are correlated with Pcc should be sought.

The need for real-time battle damage assessment from SAR imagery could benefit from the

automatic processing that wavelet-based techniques might allow.




1.0 INTRODUCTION

This report covers the second phase of a multiphase project. The goal was to design
wavelet-based ATR algorithms for radar pattern recognition requirements that advance the state of
the art in terms of improved pattern recognition performance. The Longbow FCR ATR tasks were
specifically targeted due to the willingness of the Longbow Program Office to allow use of its
extensive database of radar looks at targets, clutter, and man-made objects to see what ATR
improvements wavelet processing may offer.

ATR for a real-beam MMW radar typically begins with the generation of HRRPs from each
of several radar polarizations (Einstein [6]). Typically, these HRRPs are created by processing a
finite sequence of in-phase (I) and quadrature (Q) numbers as complex numbers through a Fast
Fourier Transform (FFT) and computing the magnitudes of the complex numbers output from the
FFT. Features are extracted from these HRRPs and then used in algorithms for target/clutter
discrimination, target/ MMO discrimination, and target classification, usually in that order. It was
hypothesized and demonstrated during this contract that compactly supported wavelets can
efficiently retain the information in the HRRPs, while reducing feature vector dimension, and
allow more powerful ATR algorithms. This approach is described in Section 3.0.

A general ATR scheme is depicted in Figure 4. Feature extraction in the upper sequence
represents the conversion from raw radar input ( X) to the set of features (y) to be used in the
classifier stage of the algorithm. Conversion from observation space to feature space is the function
of feature extraction. Once the data is in feature space, it can be processed in the classifier. The
classifier's function is to decide between the various target types (e.g., Target A vs. Target B vs.
Target C). The wavelet transform is an alternative means of performing feature extraction yielding
a new set of wavelet-based features (W) that are added to the process. This transform is shown in
the lower sequence of the figure.

The theory of wavelets and important wavelet references are discussed in Section 2.0. The
wavelet ATR project was to compress HRRP data vectors to more useful wavelet-based feature

vectors for target/clutter discrimination, target/ MMO discrimination, and target classification.
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Figure 4. Wavelet Transform as Feature Extraction

Specifically, the project was to investigate applications of wavelet processing that could
favorably impact any or all of these pattern recognition problems.

Converting to wavelets is similar to performing a Fourier transform. When the discrete
Fourier transform is applied to a vector of data, the results represent the vector in the space of
complex exponentials, i.e., the complex exponential functions are used as the basis functions. This
says that the vector of original data can be represented as a linear combination of the complex
exponentials. Converting to wavelets is an analogous operation. The original data vector is given a
representation in a wavelet space and therefore can be represented as a linear combination of
wavelets, rather than as a linear combination of complex exponentials as with the Fourier
Transform. Part of the difference between using the complex exponentials and wavelets is the
types of properties wavelets exhibit. By making a judicious choice of wavelets, the data vector can
be adequately represented with fewer terms (or features). This reduction in features can be
exploited in the classifier stage. The technical problem is to use wavelets in an efficient
representation of targets and exploit this to improve overall radar ATR performance.

Two general types of classifier algorithms used in this project are the quadratic (QD)
classifier and the profile matching (PM) classifier (also called nearest neighbor classifier). These
two types of classifiers are described in Sections 3.1 and 3.3. A type of logic that originated in
sensor fusion ATR work was also explored. The idea is to use sensor fusion logic to combine a
QD classifier with a PM classifier even though both QD and PM originate from the same radar

seénsor.
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If both the QD and PM are good, but not optimal classifiers, the fusion version of the two
may produce better performance than either classifier alone. Wavelet processing may reduce the
QD and PM feature vector dimensions to allow the fusion classifier to require no more
computations than either original, non-wavelet QD or PM requires alone. This concept is discussed
in Section 3.4.

The approach used on this project was to apply wavelet theory to the analysis of field-
measured data and to study the impact of wavelet processing on performance of the Longbow fire
control radar (FCR) system. This performance analysis was performed on the huge Longbow
radar database that consists of target-on-turntable data and data from many flight tests. The targets
in the turntable database have been shifted, in a circular fashion, within their range bins, to
simulate flight data. Also, these targets have been embedded in real clutter (from flight data), at
various clutter levels and at various range equivalents, to simulate real flight data. This target-on-
turntable database was used for preliminary classifier analysis. Flight data was relied upon for final
classifier design and testing, for MMO analysis (since the MMO observations were from flight
data), and for target/clutter discrimination (since this analysis requires huge numbers of radar looks
at different clutter scenes).

This report deals primarily with wavelet-based target classification, target MMO algorithms, and a
wavelet algorithm for target registration. Target registration attempts to take HRRP data and
position this data in a consistent manner for additional processing by the target/clutter
discrimination algorithms, the target/ MMO algorithms, and the target classifier. Since target
registration must precede each of these pattern recognition algorithms, improvements in target
registration algorithms might lead to improvements in each of these three required pattern
recognition areas. Also, this project performed a preliminary investigation of the benefits of
wavelet processing of synthetic aperture radar (SAR) data by utilizing data from MIT Lincoln Labs
and simulated SAR data. Wavelet processing of SAR images was explored with the goals of

reducing noise, detecting targets in noise, and registering targets in noise.
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2.0  WAVELET CONCEPTS

As part of the preparation for and execution of this contract, two workshops on wavelets,
wavelet packets, multi-resolution analysis, and related topics were held at the Martin Marietta
facility in Orlando, Florida. These workshops were conducted by our subcontractor Fast
Mathematical Algorithms and Hardware, Inc. (FMA&H). The first workshop was held in October
1991 and featured Ronald Coifman, Victor Wickerhauser, and Stephane Mallat. The second
workshop was held in October 1993. In addition to Ronald Coifman and Victor Wickerhauser, this
second workshop featured David Donoho, Leonid Rudin, and Gregory Beylkin. Table 2 lists the

topics for each of the workshops along with the lecturer.

Table 2. Topics of Martin Marietta Wavelet Workshops

Presenter Topic
Workshop | - October 1991
1) Ronald Coifman Overview of windows and frequency analysis
2) Ronald Coifman Wavelets, wavelet packets analysis (both continuous and discrete)
3) Stephane Mallat Overview of multi-resolution analysis and the dyadic wavelet transform
4) Stephane Mallat Two-dimensional transforms and dyadic algorithms
5) Stephane Mallat Wave1 multi-resolution software and its use
6) Ronald Coifman The Haar System, the Haar-Walsh Library and best basis
7) Victor Wickerhauser WP software description and philosophy
8) Victor Wickerhauser One- and two-dimensional transform software and technical issues
9) Ronald Coifman Applications of the best basis to one-dimensional (radar) processing

Workshop Il - October 1993

1) Ronald Coifman Review of wavelets and best basis and the AWA software

2) Leonid Rudin Image enhancement, segmentation, and decluttering optical images
3) Victor Wickerhauser Basis of wavelet selection and high resolution compression

4) David Donoho Soft threshold and nonlinear denoising methods

5) Gregory Beylkin Fast synthetic aperture radar methods from seismology

6) Victor Wickerhauser Fast principal components methods and new tools

7) Ronald Coifman Advanced ATR applications
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2.1 Fundamental Ideas
2.1.1 Preliminary Concepts

Several preliminary concepts must be understood to describe wavelets. A basis of a vector
space V is a set of vectors { Tn} which span the vector space V and are linearly independent. The
set spans the space if every vector ¥ € V can be written as a linear combination of the vectors
{Tp)}. The set {TUp} is linearly independent, which means that if X cn Upn = 0 then cp = 0 for all i.
An inner product on a vector space V is a function that assigns a scalar to each ordered pair of
vectors (1, V) with the following properties:

A (T+7, W)=(T, W)+ (¥, W)

b)(cu, V)=c(u, V)

¢) (V, u) = (1,V), the bar denotes complex conjugation
d)(u, u)>0,if u # 0.

An inner product space is a vector space together with a specified inner product on that
space. The positive square root of (11, T) is called the norm of U, and denoted by Il u Il. So, an
inner product extends the usual vector dot product, and the norm of a vector extends the notion of
size or length. A sequence of vectors {Up} is said to converge to the limit vector U if
lim,__ Il @n- T Il = 0; in this case, we write T => U in norm. A sequence {Up} is a Cauchy
sequence if for every € > 0 there exists an Ng such that lIip - Vi Il < € whenever m,n > No. If for
every convergent Cauchy sequence of vectors {Un} the limit vector U is in V, then V is called
complete. A complete inner product space is called a Hilbert space. For example, the n-dimensional
real vector space R is a Hilbert space with the usual inner product. Also, the space of Lebesgue
square integrable functions on the interval [0,1], L2[O,1], is a Hilbert space with the inner product
defined by (f,g) = | f(x) g(x) dx.

Two vectors are said to be orthogonal if (T, V) = 0 and we write ulv. A set of vectors,

S = {..., -1, Up, U1, ...}, is said to be orthonormal if (U}, Uj) = &{j, where dij is zero unless
i = j when it is one. The standard basis of R is orthonormal with the standard inner product. The

set {exp (2mint)}, for n € Z, is an orthonormal set in L2[0,1]. A linear manifold in a Hilbert space
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V is a subset of V which is itself a vector space, say W. The orthogonal complement of a set W in
V is the set of all vectors that are orthogonal to each of the vectors in W. We write this as W L. If
W is a linear manifold, we can write a vector VeV as V=W + X where W eWand X eW L .
We call this projection the orthogonal projection of V onto W. A basis for the space V which is
also orthonormal is called an orthonormal basis. For an orthonormal basis {Up, }, we may write a
vector V € V as a combination of generalized Fourier Coefficients V = X cn Up, where
cn = (V, Up) are the generalized Fourier coefficients and the series converges in norm. For
x € L2(R) (finite energy signals), this says the generalized Fourier coefficients form a finite energy
sequence (..., (x,u -1), (X,up), (x,u1), ...} which is in 12(Z). The space 12(Z) consists of
sequences {xp} with lxnl2 < o, A Hilbert space which possesses a countable orthonormal basis
is called separable. All separable Hilbert spaces are isomorphic (equivalent) to 12(Z). A collection
¢m, n is an unconditional basis for Vp, if the closure of the linear span of (%,n, neZ }=Vm
and there exists A, B such that 0 < A < B < oo and for all {cp} € 12 (2),

A X licpl2 < I cp ¢m,nli2 < B X licyl12.

The closure of a set is the smallest closed set containing that set.

2.1.2 Wavelets from a Multi-Resolution Viewpoint

With these preliminary concepts defined, we may proceed with the discussion of wavelets
from a multi-resolution viewpoint. The concept of a multi-resolution analysis is based on a
sequence of approximations to a function f, with each approximation being averages on different
scales. If an approximation at resolution level Vg is known and more detail is desired, then the
projection onto W will provide the additional information. The contribution from Wq will consist
of a linear combination of the wavelet basis in that space. So, we arrive at more and more detail in
our representation by using the wavelet bases from the collection of Wy, spaces. A multi-resolution
analysis (Mallat [7,8]) on L2(R) consists of:

1) A sequence of subspaces of LZ(R)

.. Vo c V] € Vg € V.1 © V.3 ... such that
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2) A Vi = {0}, closure (U Vi) = L2(R)

3)f(*)eVm & f(2°) € V-1

4) there is a function, ¢ € Vo, so that for each m € Z the set {¢m n}, where

®m,n (1) = 2-m/2 ¢(2-M ¢ - n); n € Z constitutes an unconditional basis for V.

By property 1, whatever can be seen at a coarse resolution can be seen at a finer resolution.
From property 2, in the limits, coarser resolutions see nothing and finer resolutions see everything.
Property 3 shows that the spaces of functions can be derived from one another by scaling each
approximated function by the ratio of the resolution values. If we require translates of ¢ to be an
orthonormal basis for Vo, then property 4 will be satisfied.

With P denoting the orthogonal projection onto Vi, we see that limm = o Pm f =, for
all f € L2(R). By considering orthogonal projections from V-1 into Vi, we have a unique
representation for any Pm-1 f as Pm.1 f = Pm f + Qm f. The subspace V-] can be written as the
direct sum of Vi and Wy where Vi = W L and W =V L. Also, the orthogonal
complements Wy are mutually orthogonal, Wi L W This means that the collection of mutually
orthogonal subspaces partition L2(R). That is, for f € L2(R), we can write f = £ fy, with
NfN2=x Ilfmllz, where each fi € W for each m € Z. For each m € Z, an orthonormal basis
{Wm, n} for Wy is the collection of wavelets, and the total collection over m will then be an
orthonormal basis for L2(R).

The use of multi-resolution analysis to develop the concept of wavelets will allow us to
generate wavelets based on a construction of a discrete filter. This will be a graphical construction
of the wavelets. This summarizes work presented by Mallat [8,9] and Daubechies [4,5]. The filter
H, which relates to the function ® through the equation, ®(2f) = H(f) ®(f), is the Fourier
transform of the sequence {h(n) }. This means H(f) = Z h(n) exp (-2rifn). We control the {h(n)}

sequence to build the desired wavelets. These wavelets will have compact support and will form an
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orthonormal basis for L2(R). We place the following conditions on the sequence {h(n)}:

1) Z th(n)! Inl€ < « for some € >0 (Regularity)
2) £ h(n-2K) h(n-21) = 8k} (Orthogonality)
3) X h(n) = 2172 (Normalization)

4) ko(z) = Z h(n) e);p (inz) can be written as

ko(z) = 21 (1 + exp (iz))® (Z f(n) exp (inz))

where Z If(n)! Inl€ < « for some € > 0 and

supzeR [T f(n) exp (inz)l < 2N-1.
Define g(n) = (-)? h(-n + 1), ¢(z) = (2m)' /2T ko (273 ), w(x) = 21/2 X g(n) ¢(2x-n), then the
djk (x)= 22 ¢(2'j x - k) define a multi-resolution analysis, and the y;j k are the associated
orthonormal wavelet basis (Daubechies [4,5]). This gives us a means of forming the wavelets by a
recursive construction rather than doing an inverse Fourier transform on an infinite product. We
use the following functions:

xo(t) = X[-1/2,12) (t), indicator function over [-1/2, 1/2)

xj®) =2Y2Zh(n)xj-1 (2t-n)

o)  =limjme xi®

gn) =(D"h(-n+1)

y(t) =212 gmn) ¢2t-n).

To summarize this process, once the sequence {h(n)} has been developed which satisfies
the conditions above, the functions ¢, g, and y are built up recursively from h(n) and xj . In this
way, wavelets can be constructed which have compact support and will yield an orthonormal basis
for L2(R). These filters h and g behave as conjugate mirror filters (Smith and Barnwell [11)).

The approximation at each resolution level is computed using a recursive approach which is
computationally very efficient and allows for rapid determination of the wavelet coefficients in each
resolution level. This process was presented by Mallat [8,9] and Strang [12], and is briefly
described as using a pyramid algorithm to form the approximations at each resolution level. The

original signal is decomposed into a sum of a coarse resolution term and a collection of detailed
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signal terms, the latter being the wavelet decomposition at the finer and finer resolutions. The
reconstruction of the signal from the decomposition is also easily computed by reversing the
pyramid algorithm process. So, this process allows for efficient decomposition and reconstruction

of signals.

2.2 Wavelet Filter Formation
The formation of the filter coefficients {hp} which have the desirable properties presented
by Daubechies [4,5] can be accomplished through a sequence of algebraic computations. This
procedure was also presented by Chui [3]. The set of coefficients {hp} we seek will satisfy the
requirements for producing the multi-resolution analysis described in Section 2.1.2. The steps for
computing these coefficients for the Daubechies filters are:
1) Select N where 2N is the number of coefficients in the filter, i.e., {ho, hy, ..., han.1}
2) Form the trigonometric polynomial
A(W) = P(sin (W/2)) = Zj=0, ..., N-1 C(N+j,j) (sin (W/2)) 2j
where C(N,M) = (N!)/((N-M)!)(M!))
3) Express this polynomial as a function of {1, cos w, ..., cos Nw }, 1.e.,
A(w) = (Ko/2) + Zj, ..., N Kj cos (jw)
4) Form a polynomial using the coefficients {Kj},
PA®@) =271 Ty, ., NKiji 2N
5) Solve the equation PA(z) = O for the roots, complex {z1, ..., zJ} and real {ry, ..., 1L }.
The complex roots come in quadruplets, zj, Zj, zj-1, Z j-1. The real roots come in pairs,
r, 1.
6) Select one complex root zj from each quadruplet and one real root 1] from each pair, with
Izjl > 1 and Inf > 1.
7) Form the polynomial B(z) = I (z - zj) I (z - ).
8) Form S(z) = -B(z)/B(1) where B(1) is B(z) whenz = 1.
9) Form P(z) = (1 + 2/2)N*1 « 8(2) + 21/2 = Tyeug, ., N1 PR 2K
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10) The coefficients of P(z), {pn}, are the filter coefficients {hp}, i.e., hn = pp.
This procedure is illustrated as follows:
1) Let N = 2, which will yield the Daubechies filter with 4 coefficients {hg, hj, hp, h3}
2) Form the A(w) polynomial,
A(W) = Zje0,1 C(1+j,j) (sin (w/2))2
A(w) =2 -cos (W)
3) Next we form PA(z) = 2-1 [-1 + 4z - z2]
4) Find the roots of PA(z) = 0. This has roots 2 + 31/2 with the plus root outside the unit
circle
5) Form the polynomial B(z) = I1 (z - zj) I (z-1)
6) Compute the function S(z) = -B(z)/B(1),
S@ =1 (@2-nz-3V2+1)
7) Form the polynomial P(z) = ((1+z)/2)N+1 « S(z) « 21/2°
P(z) = (1/(4 + 21/2) (1+31/2) 4 (343V2) 7 + (3-31/2) 22 4 (1-31/2) 23)
8) Finally, the four coefficients for the Daubechies filter are given by the coefficients of this
polynomial P(z), i.e.,
ho = (1/(4 » 21/2) (1431/2)
hy = (U(4 + 21/2) (3+31/2)
hy = (V(4 » 21/2y (3.31/2)
hy = (V(4 « 21/2) (1-31/2),

2.3 Wavelet Decomposition and Reconstruction

Use of wavelets to transform the original data vector into a collection of wavelet
coefficients may be interpreted in several ways. Two that we used are described in this section.
Also, the collection of wavelet coefficients that may be computed will vary depending on the length
of the original signal vector. For example, if the vector has length 8, then there are 3 levels

possible, and each level will involve 8 terms for a total of 24. Instead, if the original signal has 16

18




terms, then 4 levels are possible and 64 terms may be generated. Table 3 shows the various levels

and the different terms which can be created. We use the symbol 's' to indicate that a sum or an

averaging was computed and 'd' to indicate that a difference was computed. This relates to the

scaling function and the wavelet function by associating sums with the scaling function ¢ and

differences with the wavelet function Y. To understand this table for a particular item, say dsds,

which is ordered from right to left, we mean that first a sum is computed, then a difference, then a

sum and finally a difference. We observe that to form an orthonormal basis, we only need pick a

collection of terms which cover the chart horizontally and do not overlap vertically. For example,

the terms ssss, dsss, dssg, dssy, dsg, dsy, ds2, ds3, dg, d1, d2, d3, d4, ds, de, and d7 would

compose an orthonormal basis. Another basis would be the set {sp, $1, 52, 83, $4, S5, S6, 57, S0

s0, sssd, dssd, sdsd, ddsd, sddg, sdd], dddg, ddd] }. We see that many potential bases exist. In

fact, for a vector of length N, there are 2N/2 + 1 unique potential bases.

Table 3. Wavelet Coefficients for a Signal of Length 16.

X0

X1

X2

X3

X4

X5

Xg

X7

Xg

X9 X0 ¥11 X12 X13 X14 X35

S0

S1

S2

S3

Sq

Ss

Se

87

dg

dy

)

ds

dg dg

dg dy

SSO

Ssl

882

833

dSO

dSl

dSz

d83

Sdo

Bdl

Sdz

5d3

ad, dd,

dd, dd,

SSSO

SSSl

dss

dssl

SdSO

sdsl

ddSO

ddsl

SSdO

ssdl

dsdo

del

deo del

ddd, ddd,

SSSs

dsss

sdss

ddss

ssds

dsds

sdds

ddds

sssd

dssd

sdsd

ddsd

ssdd|dsdd

sddd|ddad

The collection of coefficients to use when a signal is transformed can be extracted from

Table 3. This approach corresponds to the wavelet packets method described by Coifman and

Wickerhauser [1,2]. Their technique is based on examining the ability of the decomposition to

describe the signal. This is quantified by considering the entropy cost in each decomposition and

selecting the decomposition with the minimum cost.

For the second approach, the decomposition of a signal into these coefficients at the

different resolution levels is greatly facilitated by employing a convolution operation. We denote
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the scaling function filter ¢ by a convolution with the filter H and the wavelet filter y by a
convolution with the filter G. The sequence of steps for reaching the 4 levels described above can
be visualized by the operations depicted in Figure 5. An incoming signal of length 16 enters the
filter stream. Each of the operators is either a convolution with H or G followed by a decimation
into half the number of terms. These modified signals are then operated on at the next step. This
continues for 4 iterations. The resulting terms produced are identical to the collection in Table 3.
Figure 5 also denotes the various terms being computed at each point using the same s and d

notation.

[ H
H™ | (ssss)
{sss;) - G
[~ H . {dsss}
(ssi) _ H
G ] {sdss}
(dssi) - G
[ H {ddss}
(s} — H
H ™ {ssds)
{sds;) — G
— G {dsds}
{ds;} — H
(e N {sdds}
{dds;} — G
{(x;} {ddds}
H
H _E {sssd}
(ssdi} G
— H {dssd}
{sd;) — H
’ . G = | {sdsd}
(dsdl) - G
- G "~ {ddsd}
{d;} — H
H ™ ] {ssdd}
(sdd;) — G
- G {dsdd}
(dd;} — H
G T | {sddd}
{aad;) - G
{dddad)

Figure 5. Wavelet Coefficient Construction from H, G Filters
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Reconstruction of the signal from wavelet coefficients can be achieved by reversing the
above steps. This is accomplished by observing that the inverse operators to H and G are their
adjoints H* and G*. The adjoints of these operators are their conjugate transposes. By summing
the results of these adjoint operators on the coefficients at one level, the coefficients at the
preceding level can be recovered. At level one this looks like: {xi}=H* ({si}) + G* ({di}). Since
this method can be applied at each of the levels, the original signal can be reconstructed from the
various coefficients at the set of levels.

Convolution operators may also be interpreted in terms of a linear transformation of the
original signal. By using a matrix to represent the transformation, these convolutions can be
replaced with a matrix multiplication. If the signal is not very long, this replacement will not
produce a large increase in computations and will simplify the implementation by fixing the
computation of each coefficient.

This can be illustrated for two types of filters, the Haar with two coefficients and the
Daubechies filter D04 with four coefficients. Figure 6 shows the matrix for the Haar filter. If the
incoming signal of length 16 is transformed by this matrix, the resulting vector is the set of wavelet
coefficients for the basis {ssss, dsss, {dssi}, {dsi}, {dj}}. For the matrix to be unitary, we need
to divide each row by its norm. For example, row 1 needs to be divided by 4. Figure 7 shows the
matrix which would represent the Daubechies D04 filter for a signal of length 16. It is broken into

the sum of two matrices, with the second having the square root of 3 as a factor.

2.4 Time Frequency Localization

Converting a data vector to wavelet-based representation is similar to performing a Fourier
transform. However, differences arise in the basis functions used. When the discrete Fourier
transform is applied to a data vector, the result is a representation of the vector in the space spanned

by complex exponentials. The vector is expressed as a combination of complex exponentials of the
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Figure 6. Haar Transform Matrix

form, exp (-int). When wavelets are used, a set of wavelet basis functions is used to span the
signal space. A signal is represented in the wavelet space in terms of linear combinations of
wavelets rather than complex exponentials, as was done with the Fourier transform.

An analogy with written music composed of a scale and notes helps to illustrate a major
difference between using Fourier coefficients and wavelet coefficients to represent a signal. The
location of the note on the scale tells when the note is to occur, what frequency it will have, and its
duration. When a signal is written in its Fourier coefficient form, its frequency content is being
highlighted by the magnitude of the coefficient associated with each particular frequency.

However, when a frequency occurs in time, its time localization is not available in the
ordinary Fourier transform. With wavelets, both frequency information and time localization
information are presented. This makes the wavelet description similar to written music score, with
its time and frequency information being depicted simultaneously. By making a judicious choice of
wavelet basis functions, the data vector may be adequately represented with fewer terms.

This capacity to localize in time and frequency with wavelets comes from the manner in
which the wavelet basis is constructed. Since the various functions are produced by dilations and

shifts of the generating wavelet, the location of frequency content can be readily found. Fourier
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transforms that are windowed, such as the Gabor transform (Gabor [7]), provide some time
frequency localization. However, wavelets maintain an advantage in that for low frequency
occurrences in the signal, the wavelet with a long dilation and hence a low frequency matches up
with the signal. On the other hand, for high frequency occurrences, the wavelet with a short
dilation and hence a high frequency matches up with the signal. It is this property of wavelets that
makes them match up with the signal in fewer terms and therefore provides efficient time frequency
localization.

Analyzing signals with wavelets may be described with the use of time frequency plots.
The time frequency plot describes the frequency content of the signal and its time location within
the uncertainty limits. Figures 8 through 11 show these plots for various choices of signals and
wavelet bases. For these plots, the signal to be analyzed is shown along the bottom. The easiest
signal to discuss is the spike shown in Figure 8, in which the spike has very short time duration.
The spike is given in the lower plot, while its time frequency plot is shown above. This plot shows
a strong localization in time for this signal and a large spread in frequency, which is clearly the
correct interpretation for this spike signal. It is of interest to remember that the Fourier Transform
of a dirac delta function is an infinite frequency spectrum.

Figure 9 shows a signal with varying intensity magnitude and covering a longer period of
time. Its time frequency plot depicts this by starting with lighter (weaker) rectangles and increasing
in darkness as the intensity increases. Also, the spread of frequencies covers the full range. The
signal shown in Figure 10 starts with a high intensity pulse and dampens out over time. This is
shown in the time frequency plot by having the rectangles begin appearing at the time of the pulse
and the intensities of these rectangles decrease over time, indicating a weaker and weaker intensity
signal. Figure 11 shows a si gnal with various intensities and frequencies over the time interval.
The time frequency plot shows this assorted collection by various rectangles and intensities over
the interval. Occasional higher frequencies appear, but mainly lower frequency rectangles

dominate. These time frequency plots show the interplay between time and frequency for a
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Figure 10. Time Frequency Plot — Damping Signal
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Figure 11. Time Frequency Plot — Varying Frequency Signal
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particular signal. This relates to depicting the intensity of the coefficients for the wavelet bases over
the various choices of frequency level (or resolution level). So, these plots show how a signal is
decomposed into its various resolution levels.

Time frequency plots were applied to radar HRRPs for various target samples as shown in
Figures 12 through 17. In this case, the input signal is the HRRP for the sample shown at the
bottom. The time frequency plots show the intensity of the wavelet coefficients for various
resolution levels. The plots indicate that the number of rectangles needed to describe the signal is
approximately eight, which is about half of the number of data points input to the wavelet
decomposition. This indicates that reduction in the number of features should behave favorably in
terms of classifier performance and should not affect classifier performance with a two-to-one

reduction in features. This supports the anticipated reduction in dimensionality of the feature space.
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Figure 12. Time Frequency Plot - HRRP Sample 1
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Figure 13. Time Frequency Plot -~ HRRP Sample 2
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HRRP Sample 3

Figure 14. Time Frequency Plot -
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Figure 15. Time Frequency Plot - HRRP Sample 4
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Figure 16. Time Frequency Plot - HRRP Sample §
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Figure 17. Time Frequency Plot — HRRP Sample 6
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3.0 FEATURE EXTRACTION AND CLASSIFICATION

Wavelets can be used to replace the ordinary feature set as a modified feature extraction
process. This is depicted in Figure 18. The wavelet coefficients are processed rather than the
original features. This may be beneficial in different ways. First, it reduces the number of features
while maintaining the performance level. Second, it can lead to more effective features. Third, it
could also provide a more robust set of features, since it involves an averaging process. It has
already been discussed that many choices exist for wavelet bases once a particular wavelet has been
selected. By varying the choice of wavelet and the choice of wavelet basis, many different sets of

features can be constructed for one set of input data.

Baseline -
X5 Sl?p#at| »1 Feature y »1Classifier|
9 Extraction
7 Wavelet | =
Xy Jnput Wavelet | | £oature | a|Classifier
Signal Transform Extraction
AR045-0022-04

Figure 18. Wavelet Transform as a Feature Extraction

For this contract, feature sets were selected in a variety of ways. Several types of wavelets,
several different sets of bases, and other feature selection techniques were investigated. The Haar
wavelet, D02, and the Daubechies, D04, wavelet were extensively studied. The choice of the basis
was based on different criteria. Some of these choices are listed in Table 4. The method described
by Coifman and Wickerhauser [1,2] using the minimum entropy cost was examined. The
Karhunen-Loeve criteria for selecting features was another technique tested. A method of reducing
the feature set was created by quantifying the impact on classifier performance with and without a
particular feature. Features with a large impact were considered important. This approach showed
relationships between wavelet coefficients from various resolution levels. These different
approaches to feature extraction are described in greater detail in Section 4.0 and in the

performance results in Appendix A.

36




Table 4. Feature Extraction and Classifier Options

Wavelet Criterion Classifier
D02 Minimum entropy Quadratic
D04 Karhunen-Loeve Quadratic
Polynomial
D06 Individual Feature | Profile Matching
. . Fusion

Once the feature set was developed, the classifier itself was considered. Several different
approaches to classification were tested. These included the quadratic classifier, quadratic

polynomial classifier, profile mafching, and combined classifiers using a fusion approach.

3.1 Quadratic Classifier

The quadratic classifier used is based on the Mahalonobis distance from each of the training
data sets. For each of the classes involved in the decision, a set of training data samples from
which an estimate of the class population mean and covariance is computed. These statistics are
used since the population mean and covariance would determine the distribution if the population
were indeed Gaussian. For each training class, a mean () and a covariance (Z) is computed. The
testing stage of the process is based on computing the class which has the minimum distance from
the test sample X. This distance is given by (X - mit Zi'l (X - mj) + In IZjl. The class which

yields the minimum distance for the above is chosen as the assigned class.

3.2 Quadratic Polynomial Classifier

Another technique used a quadratic polynomial to build a decision surface. This was
accomplished by computing powers and products of individual features and forming new feature
vectors from these expanded terms. For each class, a coefficient vector a is formed. The
individual training sample vectors Xjj, ith class, and jth sample have been expanded to include the

additional square and product terms. Let Xit={Xi1, ..., XiM}, M sample vectors from the ith
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class, and let Xt = (X11, ..., XLY) correspond to L classes. Then the coefficient vector is given by
3= (XtX)-1 ;. The test vector and the coefficient vector are multiplied using the dot product
ajt « X. This value is compared to the threshold. If the value is greater than or equal to the
threshold it corresponds to one class, and if less than the threshold to the other. This produces the
quadratic polynomial surface in the feature space. For more than two classes, the decision logic is

modified to allow for multiple surfaces.

3.3 Profile Matching Classifier

The profile matching (PM) approach is based on the nearest neighbor concept. A collection
of vectors from each training set is stored and compared directly with the incoming sample. This
comparison uses the distance Pj, with Pj = T Ixj - sim! where Xxj is the ith component of the test
vector X and Sim is the ith component of the mth stored training vector S, The minimum distance
is determined over all the stored samples and the decision is to choose the class of that sample
which gave the minimum distance. This approach is computationally intensive if the space has high

dimension and the number of stored samples is large.

3.4 Fusion Classifier

Performance for the individual classifiers can sometimes be improved if these techniques
are combined into a fusion approach. The combination of the quadratic classifier and the profile
matching classifier serves to illustrate this technique. The classifiers are constructed as described
above, but additional information is needed. For both the quadratic classifier and the profile
matching classifier, the distance which was second smallest is saved and the minimum distances
are compared to the second smallest distances. Intuitively, the minimum distance that is further
away from its second smallest distance provides the greatest decision confidence. This is the
decision of the fusion classifier.

Since these classifiers have such different forms, it was determined that a multiplication

factor was required for the profile matching distances to make the distances have comparable
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values and achieve a valid fusion technique. For the fusion technique to be effective, the two

approaches used must have comparable performances. Otherwise, the one classifier will dominate

the other classifier in the fusion decision.
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4.0 TECHNICAL RESULTS

Application of wavelet concepts to the radar ATR problem required incorporation of
wavelet software into the ATR suite of algorithms. This adaptation was facilitated by the use of the
software provided from FMA&H. The test focused on the modification of the feature set to
incorporate wavelets and the classifier design. The goal was to build a feature set and classifier
design with both improved performance and computational simplification, then to extend this
approach to other parts of the ATR processing.

Initially, the extensive turntable database developed for Longbow was used. It includes
many target types with ample azimuth and depression angle variation. The data was altered by the
coherent addition of actual clutter from selected sites to better represent realistic environmental
conditions. Later, the experimental database was expanded to include flight target data collected
during actual system flights. This data is more representative of expected conditions, since it
contains actual flight system data. The Longbow POP system was used for data collection.

The software provided by FMA&H contained both wavelet packet and multi-resolution
analysis approaches for performing wavelet decomposition and reconstruction. These alternative
methods were examined for advantages and disadvantages, both in the ease of use and their relative
performance. An in-house wavelet software suite was built and modified to match up with the
format of the data sets. This modification reduced input/output operations, which were adding
significantly to the computational time for processing the data. The FMA&H software remains
more efficient for analysis of a small number of ASCII signals, but for the large data files we were

processing, the fixed approach proved more efficient.

4.1 Wavelet Classifier Results

Daubechies 2, 4, and 6 (D2, D4, and D6) wavelet coefficients were tested as features for a
quadratic three-class target classifier algorithm. In general, the results were very similar among the
three types of wavelet transform coefficients tested. Consequently, attention was focused on the

D2 coefficients, since they can be calculated most efficiently.
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Blind testing of the target-on-turntable data sets yielded average Pcc values that were 6.7
percentage points higher than the Longbow baseline. The training set and the testing set consisted
of radar looks at 360 degrees of aspect, at different elevation angles, with various levels of clutter
added to the targets. These results were for a wavelet quadratic classifier that required 13.6 times
more computations than the Longbow baseline classifier algorithm.

The major interest then became the testing of some of the flight data based on wavelet
algorithms that were trained on turntable data and some of the other flight data. This is also blind
testing because the training set and the testing set do not overlap. These results are generally
indicative of what an operational system will experience.

The most recent wavelet classifier experiments used target-on-turntable data and some of
the target flight data to train the classifier. The target data used to test the classifier was target flight
data. The target flight test data set and the target flight training data set did not have any data in
common; however, target aspect angles for flight test data were somewhat similar to target aspect
angles for flight classifier training' data. Also, target sites and adjacent clutter were similar for flight
training data and flight test data. Consequently, some classifier performance enhancement was
expected by adding the flight training data to the turntable data, for classifier training, due to a
combination of similar clutter types and similar aspect angles between training data and testing
data.

Tradeoffs and experiments were conducted to quantify some of the improvements in
classifier performance through the use of flight training data in addition to turntable data. More
importantly, the new wavelet-based classifiers outperformed the baseline Longbow POP classifier
on flight test data. The Longbow POP classifier flight test database consisted of target data from
four different Army test areas. Because each test area provided both near distance and far distance
target data, a total of eight target test collections were available. There are four target types, which
are denoted CL1, CL2, CL3, and CL4. The classifier will eventually merge CL3 and CL4 into one
class; consequently, there are three final classes to contend with in the Longbow classifier

associated with this data.
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Classifier results are detailed in Appendix A and can be summarized in two ways. Both
methods calculate the percent correct classification (P¢c) for each of the three target classes, using
the eight target test collections. Pcc values are given as deltas from a fixed, unreported P¢c for
reasons of classification. Method one (M1) calculates the (equally weighted) average of the three
Pec values for each target test collection (except at the HL site, where only CL1 and CL2 target
types are present). Then, these eight average Pcc values are averaged to get a global average Pcc.
Method two (M2) computes the sample size weighted average of the three Pcc values for each
target test collection. (This calculation yields the number of correct classifications/number of
classifications ratio for each target test collection.) The eight sample weighted P¢c averages are
averaged to get a global average Pcc (Avg. Pec).
A case can be made for each of the two methods, but method one seems to work better.
There are many more test samples from CL1 than from CL2, CL3, and CL4; so a poor,
unbalanced classifier that favors CL1 yields better M2 scores than a good, more balanced
classifier. This imbalance is illustrated by the poor M1 results in case 4 of Appendix A and the
good M2 results in case 42 of Appendix A for an unsatisfactory classifier that changes all CL3 and
CLA4 calls to CL1 so that nothing is ever called final class 3. That is, this classifier should produce
poor results by any appropriate scoring method.
Several conclusions follow from the analysis of the data in Appendix A:
1) Cases 1 and 39 contain M1 and M2 Longbow baseline classifier results.
2) Cases 2, 3, 40, and 41 appear to show that limiting turntable training data to the same
target aspect angles as those of the flight training data, which are similar to the flight
testing data, produces results which are not as good as the baseline in cases 1 and 39.
These tests were designed to investigate a suspicion that including flight data in the
training set led to better results because of target aspect angle similarities between the
flight training data and testing data. The results are not conclusive, though, especially

since some of the resulting classifier training sets suffered from small sample size
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problems, which can cause the use of inappropriate inverse covariances in quadratic
classifiers.

3) Cases 5 and 43 show that the baseline classifier biases, or gains, gave better results than
the case in which zero biases were used. Comparison of case 6 with case 7 and case 44
with case 45 shows that the baseline weights also help W48, which is a D2 wavelet
quadratic classifier using all wavelet coefficients except the highest frequency
coefficients.

4) Comparison of case 7 with case 1 and case 45 with case 39 shows that the quadratic D2
wavelet classifier W48, which is 48-dimensional, works at least as well as the baseline
classifier.

5) Cases 8 and 48 show that the 42-dimensional quadratic wavelet classifier W42, which
consists of 24 D2 wavelet coefficients and 18 D2 wavelet packet coefficients, also works
at least as well as the baseline classifier. In fact, W42 is at least as good as W48 and
requires fewer quadratic classifier calculations.

6) Case 46 shows that a 26-dimensional wavelet classifier, which worked well in a target
versus man-made object test, does not work well as the classifier. The reason may be
that most of the man-made objects encountered were, in general, not as long as the target
and the 26-dimensional wavelet classifier emphasized wavelet coefficients that
correspond to central portions of the HRRP profile of the detected object.

7) Statistical analysis showed that the flight data included heavier clutter than the turntable
data. Cases 11, 51, and 52 show that attempts to artificially adjust the turntable training
data for heavier background clutter had no beneficial effect on classifier performance.

8) Cases 19, 20, 59, and 60 show that new versions of the original wavelet quadratic
classifiers W48 and W42 (LPTRAIN will accompany the data in Appendix A for these
new versions) can be designed that require far fewer computations than the original
versions but still perform better than the baseline classifier. Implementation would allow

computational reserves that can be used in the profile matching part of a sensor-fusion-
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logic quadratic and profile-matching fusion classifier so that the fusion classifier requires
no more computational capability than the baseline classifier. (In general, if very many
training profiles are used in a profile matching classifier, the profile matching classifier
requires many more computations than a quadratic classifier.) Some wavelet quadratic
classifiers had a problem with a low Pc¢¢ for class number three. These new versions
made the problem worse.

9) Cases 23 and 63 show that the performance of an appropriate profile-matching classifier -
is better than the baseline results in cases 1 and 39.

10) Cases 28 and 68 show that a fusion classifier that combines a profile-matching
classifier and the new W42 quadratic classifier produce average P¢c values that are 3
percentage points better in the M1 sense and 5 percentage points better in the M2 sense
than the baseline classifier. This fusion classifier is no more complex than the baseline
classifier.

11) Cases 38 and 78 show the improved results versus cases 19 and 59 of a version of the
new W42 quadratic classifier with branching logic based on the odd/even polarization
ratio and a standard deviation statistic related to target length. The computational
complexity of this version of the new W42 is similar to that of the case 19 and case 59

version of W42 (still much less than the baseline) and is therefore still compatible with

fusion processing. That is, this branching version of W42 offers improved P¢c
performance without increasing the number of computations.

In conclusion, the two best wavelet classifiers produced on this project are wavelet fusion
classifiers that are significantly better than the Longbow baseline classifier in terms of average Pcc,
and both choices require no more computation than the Longbow baseline classifier. These are
branching classifiers that fuse a profile-matching and a quadratic classifier.

Cases 30 and 70 show that a branching classifier that fuses a profile matching classifier and

a W42 quadratic classifier produce average P¢c values that are 4 percentage points better in the M1
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sense and 6 percentage points better in the M2 sense than the baseline classifier. Details of this
classifier are given in the comments at the top and the right of cases 30 and 70 in Appendix A.

Since merged class 3 may be the most important class, a modification was made to the
previous fusion classifier. This new fusion classifier uses only the profile matching classifier in the
branch where the odd/even ratio is high. The P¢c values for this fusion classifier (cases 31 and 71)
are 3 percentage points better than the baseline in both the M1 and the M2 sense, and the merged
class 3 Pcc values are at least as high as those of the baseline. Details of this classifier are in the
comments at the top and the right of cases 31 and 71 in Appendix A.

One final issue that was addressed is the difference between turntable data and flight data.
In the training of classifier algorithms, it has been the desire of ATR algorithmists to be able to use
only turntable data for training and then test with flight data. This, of course, requires robust
algorithms. To begin to address this issue for the classifier, it was decided to compare the means of
the HRRP vectors for flight and turntable data. Figures 19 through 22 are plots of these data. Each
plot is for a single target type and presents the even, cross, and odd polarization HRRP vectors.
This data is from one sector of the 360-degree-possible azimuth aspect angle. The solid line is the
turntable-only data, and the dashed line is the flight-only data. The plots appear reasonably similar.
Plots from other sectors showed similar trends. There does not appear to be any reason to believe

that flight and turntable HRRPs are drastically different.

4.2 HRRP Wavelet Registration Algorithms

HRRP target registration is the task of preparing for pattern recognition algorithms by
electronically moving the profile to center it in the range bin. This is shown in Figure 23, where the
solid line shows the original data with the target at the edge of the range bin and the dashed line
shows the results of registration. Registration precedes the detection and discrimination algorithms.

Consequently, performance of the registration algorithm has a great impact on the algorithms in
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each of these three parts of the FCR ATR. Registration is required for several reasons. First, the
target may occupy only part of the HRRP from a given range bin. Second, the target-to-sensor
range is often decreasing, so that there is a uniform probability that the target will be located
anywhere within the range bin. Third, for most processing, the algorithms assume the target is
centered in the range bin. Consequently, registration must estimate the center of the target, or the
start and/or stop of the target, or some other locator of the target. The target may be split in the
HRRP; if so, registration must correctly combine the split parts of the target. Both of these
registration tasks are illustrated in Figure 23 for a target embedded in light clutter. That target,
which was originally split and not centered in the HRRP, is combined correctly and centered in the

HRRP by the registration algorithm.
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Figure 23. Registration Example

To create a "good" registration algorithm, one must first define what "good" means. The
most appropriate definition is that a good registration algorithm improves target/clutter

discrimination, target/MMO discrimination, and target classification performance. Unfortunately,
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to compare registration algorithms, performance results must be compared for the three ATR tasks
for the competing registration algorithms on the turntable and flight data. This task is an extremely
time-consuming computer task and is not feasible unless faster registration comparison methods
first narrow the candidate registration algorithms to a very few.

To illustrate why registration is important, an experiment was conducted in which the
targets were always centered in the HRRP and no additional registration was needed. (This was
possible because the turntable data was originally taken with the target on the center of the turntable
and the turntable positioned so that the center of the turntable coincided with the center of the
HRRP.) The Longbow baseline classifier was trained and tested on such data and the average Pcc
was 9.16 percentage points better than the same classifier with the Longbow baseline registration
algorithm used, as usual. This experiment indicated that large ATR performance improvements are
possible if registration can be significantly improved, especially if the registration accurately
estimates the physical center of the target.

Two fast methods of evaluating registration algorithms were defined. One method was that
if the same target was embedded in both light and heavy clutter, a good registration algorithm
would provide the same target location for both cases. That is, the registration algorithm would not
vary with background clutter level. One wavelet registration algorithm performed better than the
Longbow baseline registration method in this sense. Figure 24 shows the results of registering an
HRRP target embedded in both light (LT) and heavy (HV) clutter. This wavelet registration
algorithm centers both versions of the same target in the same place. Table 5 summarizes the
results of this investigation by comparing the wavelet registration with the standard registration as a
function of light and heavy clutter as well as for two target types (T and W) and for two depression
angles (low and high). In all cases, the wavelet registration was more robust.

However, when the baseline classifier and the wavelet baseline classifier were preceded
with this wavelet registration method rather than the baseline registration method, average Pec

dropped by 1 percentage point for both classifiers. It is not clear whether this is due to the current
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Figure 24. Registration with Light and Heavy Clutter

algorithms being adapted to account for the anomalies in registration or is an issue with the

 registration itself. It was concluded that this light/heavy clutter invariance measure was not a good

Table 5. Registration Summary

Average Heavy - Light
Target Type Reg Wav imp (%)
T-Low 0.791 0.639 19.2
T-High 0.890 0.718 19.3
W-Low 0.374 0.287 23.3
W-High 0.879 0.736 16.3
Average 0.734 0.595 19.5

enough fast method for evaluating registration algorithms.

The other fast method proposed to evaluate registration methods was to measure how well
the registration method finds the known center of the turntable. In the Longbow turntable data
files, the target HRRP has been randomly shifted so that the center of the HRRP is generally not

the center of the turntable and different levels of clutter have been added to the target. However, it
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is possible to retrieve the original center of the turntable position in this shifted HRRP, for
registration testing purposes. This evaluation method showed that a perfect registration method that
always picks the center of the turntable yields an average 9.16 percentage points improvement in
the classifier Pcc. Also, a registration algorithm that was somewhat better than the Longbow

baseline registration algorithm in this sense did show some improvement in classifier average Pcc.

This evaluation method requires about 1.5 minutes of computer time to run, while the classifier
requires several hours to run. It appears that this evaluation method is a suitable fast registration

evaluation tool.

4.3 Target - Clutter ATR Results

Examination of the Longbow target versus clutter discrimination process was initiated. This
process is a complex sequence of different types of discrimination algorithms where, typically, the
output of one algorithm becomes the input to the next. The types of data required for the different
algorithms vary, and the types of computer files vary also. An additional complication is that the
data files are very large, so considerable disk space must be allocated for this discrimination study.
The appropriate (archived) data files and existing software for processing these files have been
identified. Wavelet software will need to be integrated into this software, and new algorithms will
need to be designed and tested to see whether wavelet techniques can improve target/clutter

discrimination.

4.4 Wavelet Target - MMO ATR Results

D2, D4, and D6 wavelet coefficients have been tested as features for a quadratic MMO
target versus man-made object discrimination algorithm. In general, the results were very similar
among the three types of wavelet coefficients tested. Consequently, attention was focused on the
D2 coefficients, since they can be calculated most efficiently.

Resubstitution testing of the APG, HL, WSMR, and YPG flight data sets of targets and

man-made objects yielded average Pcc values that were just over 7 percentage points higher than

51




the Longbow baseline. Resubstitution results are considered to be optimistic, since the algorithm
training set is the same as the algorithm testing set. Of more interest was the testing of some of the
flight data based on wavelet algorithms that were trained on turntable data and some of the other
flight data. This blind testing uses a training set and testing set that do not overlap. These results
are generally indicative of what an operational system will experience.

The data that the MMO algorithms were tested against was flight MMO and target data from
the four test sites discussed in Section 4.1: APG, HL, WSMR, and YPG. Results are given in
terms of P¢c change (versus the Longbow baseline MMO algorithm) for the two classes (target and
MMO) for each of the four sites. The results given in Table 6 are Pcc values for the two-class
problem and are presented for the four sites. The results are all relative to the Longbow baseline
target MMO algorithm. Some description of the wavelet algorithms that were tested is included.
The wavelet baseline in Table 6 uses all D2 coefficients except the coefficients corresponding to the
wavelet functions with the highest wavelet frequency (shortest length).

These results show that a new wavelet target-MMO algorithm can increase average Pcc
versus the Longbow baseline by 7.53 percentage points and simultaneously reduce the number of
computations required to about one-third of the number required by the Longbow baseline MMO
algorithm.

4.5 SAR Wavelet Algorithms
SAR images were provided by Lincoln Labs. The data provided was:
Mission 85 pass 5, frames 27-30
Mission 90 pass 5, frames 1-127
Mission 78 pass 1, frames 5-40
Mission 78 pass 2, frames 16-42
Mission 78 pass 3, frames 1-38
Mission 78 pass 4, frames 6-27
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Table 6. Target - MMO P¢c Results and Algorithm Complexity
Rel. Avg.
Target MMO Pece Complexity Comments
0.00 0.00 Longbow Baseline
0.00 0.00
0.00 0.00
0.00 0.00 0.00 1.000
5.03 0.79 Wavelet Baseline
14.01 -2.61
5.12 3.42
4.89 4.24 4.36 1.136
12.44 -1.20 Several features deleted from the
22.79 -6.29 Wavelet Baseline
7.26 1.42
6.44 2.12 5.62 0.449
16.37 -3.65 More features deleted from the
26.73 -9.58 Wavelet Baseline
6.64 0.26
6.49 2.99 5.66 0.290
22.77 -6.61 New transformation applied to the
31.28 -12.77 previous algorithm
5.44 -1.32
6.80 8.74 6.79 0.290
22.80 -6.84 A few features deleted from the
31.61 -12.48 previous algorithm
5.85 -1.37
7.56 9.1 7.03 0.244
23.25 -7.29 A few wavelet packet features
32.12 -12.39 added to the previous algorithm
5.90 -0.90
7.66 11.86 7.53 0.339

Mission 78 pass 6, frames 6-26

Mission 78 pass 7, frames 12-41

Mission 78 pass 8, frames 7-32

Mission 78 pass 9, frames 5-41

Mission 85 pass 1, frames 1-38

Mission 85 pass 2, frames 5-37

Mission 85 pass 3, frames 7-42

Mission 85 pass 4, frames 1-32

Mission 85 pass 6, frames 1-37
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Mission 85 pass 7, frames 1-41
Mission 85 pass 8, frames 1-31
Mission 85 pass 9, frames 1-31.

Each frame consists of four polarizations of I and Q data for images of 512 by 2058 pixels.
Data collection was conducted at Stockbridge, NY. There are scenes containing both rural clutter
and arrays of target objects. The targets represented are:

2 M-55 howitzers

2 M-60 tanks

3 M-48 tanks

1 M-113 armored personnel carrier
2 M-84 armored personnel carriers
1 M-59 armored personnel carrier.

Software was developed to read the raw data files provided and to create SAR images.
Problems were overcome concerning construction of the edges of the SAR images and also
concerning the splicing together of parts or subimages of one large SAR image. The data has been
now been processed both as single polarization magnitude (pixel) data and also as complex I, Q
data from multiple polarizations. The images that were processed appeared to be very clean.
Objects that were known to be in the images were easily identified.

A whitening filter suggested by Dr. Les Novak from Lincoln Labs was coded and applied
to one SAR image. The results of this filter appeared to be about a 30 percent improvement in the
visual clarity of the image. Wavelet noise removal and image compression techniques were applied
to one of these SAR images. The results were reasonably good, as was expected.

Two-dimensional wavelet code was written with the goals of easing filtering and
compression, followed by inverse wavelet transformation to reconstruct the images. An algorithm
was defined that used filtered coefficients from two-dimensional wavelet transforms to detect and
register (in a two-dimensional SAR image as opposed to the previous one-dimensional HRRP) a

target in a SAR image. The algorithm used the wavelet coefficients and did not require an inverse
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wavelet transformation. This algorithm exploits the expected correlations of multiple target pixels
in the SAR image. The algorithm was very effective at locating targets in the SAR database. Also,
an artificial target was imbedded in heavy noise where the peak noise was higher than the peak
signal. The wavelet coefficient detection and registration algorithm had no trouble locating this
target in spite of the very heavy noise. The algorithm uses the known surface locations
corresponding to the coefficients selected by the algorithm (and does not use the scaling function's
coefficient) to compute the target's location by probability methods.

At this point, this effort was terminated by direction from the ARPA Program Manager in

favor of concentrating on range-only radar processing.

4.6 Software Developed

Classifier software was created for target-MMO algorithm evaluation. Software was written
to read Lincoln Labs SAR data and to construct the images. SAR processing software was created
to fix edge problems in earlier SAR image creation programs. Also, new software was created to
correctly combine parts of the large SAR images into the complete images. Two-dimensional
wavelet transform programs were written to allow easy filtering of coefficients and fast sorting for
coefficient selection or image compression. Inverse transform code was also written.

All of the two-dimensional code is as fast as possible, requires no external library links,
and therefore could be transferred to any computer (such as PC or Sun workstation) that has a
FORTRAN compiler. Code was written to test wavelet HRRP registration algorithms, perform
wavelet detection and registration on SAR images, whiten SAR images, return Longbow target
data to the center-of-turntable (perfect registration) position, and to quantify the benefits of perfect

registration.
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4.7 Fast Mathematical Algorithms and Hardware Corporation

Fast Mathematical Algorithms and Hardware Corporation has collaborated over the last few
years with the Martin Marietta radar group directed by Charles Stirman in Orlando, Florida, for
processing radar returns for automatic target recognition tasks using wavelet-based technology.

FMA&H's role in this work was principally to provide Martin Marietta with the latest
developments in signal processing tools, as well as to assist in adapting these tools to the needs of
Martin Marietta. In particular, methods developed at Yale, New York University (NYU), and other
research centers were organized into a comprehensive toolkit. FMA&H performed these tasks from
1992-1995:

1) Converted and delivered properly debugged and documented transportable wavelet and
wavelet packet signal processing development environment to VAX/VMS and Sun
operating system at Martin Marietta's Orlando facility. This code incorporates the
Wavel code of Mallat at NYU as well as the wavelet-packet code developed at Yale and
FMA&H. This development environment is being continuously upgraded and
expanded to include higher dimensional signal processing.

2) Organized and presented two workshops to instruct Martin Marietta personnel (as well
as other government lab personnel) in usage of the algorithms and software.

3) Produced and delivered instructional material to train users, analysts, and programmers
in the use of the wavelet or wavelet-packet-based signal processing development and
simulation software.

4) Provided qontinuous technical support, consulting, and interactive algorithm
development for various ATR tasks as required by Martin Marietta. These tasks
included parameter extraction toolkits, denoising algorithms and software, and an initial

exploration for automating the process of parameter extraction.
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APPENDIX A. WAVELET CLASSIFIER COMPARISON TABLE FOR 78 CASES

The following data contains results from 78 classifier experiments. Many other classifier

experiments were run, but the results were not significant enough to report. Cases 1 through 38

contain M1 (equally weighted average) scoring results, and cases 39 through 78 contain M2

(sample size weighted average) scoring results. Some description of the experiments is given at the

top and at the right side of each experiment's subsection in the data table. The eight "Average Pcc"

numbers given in the tables are for near distance, followed by far distance testing data from APG,

HL, WSMR, and YPG respectively. This notation is used throughout:

QD
PM
BD
BB
O/E
STD
PM_DELTA
Q_DELTA
TT

.BIAS

LPTRAIN

quadratic classifier

profile matching

Mahalanobis distance + In determinant (QD discriminant)
similar to BD except for PM classifier

total odd power divided by total eVen power

standard deviation (large implies long target)

measure of PM classifier's confidence

measure of QD classifier's confidence

target-on-turntable radar data

number added to QD and PM calculations to shift Pcc values

file name that indicates QD with few calculations
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Four original classes: CL1, CL2, CL3, CL4. CL3 and CL4 are eventually merged together

Results are relative to the baseline P¢¢ from the Longbow algorithms, for comparison
+ indicates an improvement in relative performance in percent

- indicates a loss in relative performance in percent

Cases 1-38 weight 3-class Pg¢ values equally

Cases 39-78 weight P values based on test sample sizes

For each of the cases, the file header identifies the individual data sources

For each case, we present the average Pgc for the near range and the far range at each test

site in alphabetical order followed by the overall average:

[LEGEND FOR EACH CASE

Aberdeen Proving Grounds — Near
Aberdeen Proving Grounds — Far
Ft. Hunter-Liggett — Near

Ft. Hunter-Liggett — Far

White Sands Missile Range — Near
White Sands Missile Range — Far
Yuma Proving Grounds — Near

Yuma Proving Grounds — Far

AVG. = Overall average for case

METHOD 1 SCORING RESULTS

1. BASELINE CLASSIFIER GAINS (BL)

Average Peg = +11
Average Peg = -11
Average Pgg = +6
Average P¢c = +6
Average Peg = +13
Average Pgg = +6
Average Pgc = +6
Average P¢g = -2
AVG. = +4 (+4.4)

Average of merged class 3 Pg¢ values = +0.0
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2. [LPEELE.FLIGHT.FILES]TRAIN_BL_ANG_TT.PRM

Average Pcc = +3

Average Pcc = -19 Train on turntable data at
Average Pgg = +8 same aspects as flight
Average Pgg = +5 training data - small sample
Average Pcc = +2 sizes for some sectors
Average Pgg = -4

Average Pec = -3

Average Pgg = -9

AVG. = -2

3. [LPEELE.FLIGHT.FILES]TRAIN_BL_ANG.PRM

Average Pgc = +7

Average Pgg = -9 Turntable data at flight
Average Pgg = +7 training aspects plus
Average Pg¢ = +3 flight training data
Average Pgg = +9

Average Pog = +2

Average Pgg = +4

Average Pg¢ = -6

AVG. = +2

4. BASELINE CLASSIFIER GAINS: THEN MERGED CLASS 3 CALLS FORCED INTO CLASS 1

Average Pgg = +0

Average Pgg = -18

Average Pgg = -5 This poor average result shows the

Average Pgg = -9 results of the three Pg¢ values being equally
Average Pgg = +2 weighted rather than weighted by

Average Pgg = -2 sample size, as in 42.)

Average Pgc = -6

Average Pgc = -9

AVG. = -6
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5. CLASSIFIER GAINS: 0.00 0.00 0.00 0.00

Average Pgc =
Average Pgc =
Average Pec =
Average Pgc =
Average Pgg =
Average Pgg =
Average Pgc =
Average Pgg =

AVG. =

+7
-10
-1
+0
+11
+4
+6

+2

6. [LPEELE.FLIGHT.FILES]TRAIN_W48.PRM NO WEIGHTS (ALL ZERO)

Average Pgc =
Average Pgg =
Average Pgg =
Average Pgc =
Average Pgc =
Average Pgc =
Average Pgc =
Average Pgc =

AVG. =

+0
-11
+4
+2
+12
+8
+2
-1
+2

7. [LPEELE.FLIGHT.FILES]TRAIN_W48.PRM WEIGHTS = BL WEIGHTS

(Average Pgg = + 6)
Average Pgc =
Average P¢c =
Average Pgc =
Average Pgc =
Average Pgc =
Average Pg¢ =
Average P¢g =

AVG. =

-12
+8
+9
+12
+7
+3

+4
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8. [LPEELE.FLIGHT.FILES]TRAIN_W42.PRM

Average Pgg = +6
Average Pgc = -10
Average Pgg = +7
Average Pge = +9
Average Pgc = +14
Average Pgc = +8
Average P = +5
Average Pgo = +0
AVG. = +5

8. [LPEELE.FLIGHT.FILES]TRAIN_W42_F_ONLY.PRM

Average Pgc = +1
Average Pgc = -8
Average Pgc = +15
Average Pgc = +6
Average Pgc = +5
Average Pgg = +4
Average P = +1 !
Average Pgg = -12
AVG. = +2

10. [LPEELE.FLIGHT.FILES|TRAIN_W42_TT_ONLY.PRM

Average Pgg = -4
Average Pcc = -16
Average Pgg = +0
Average Pgg = +1
Average Pgg = +14
Average Pgc = +5
Average Peg = +2
Average Pgc = -4
AVG. = +0

61




11. [LPEELE.FLIGHT.FILES]TRAIN_BL_SP.PRM

Average Pec =
Average Pgg =
Average Pgg =
Average Pgg =
Average Pcc =
Average Pgg =
Average Pgc =
Average Pgg =

AVG. =

+7
-7

+10

+9
+9
+2
+5
-2
+4

Dependent clutter
added to turntable

training data

12. [LPEELE.FLIGHT.FILESJTRAIN_BL_SP_TT.PRM

Average Pgg =
Average Pgg =
Average Pgg =
Average P¢g =
Average Pgg =
Average Pgc =
Average Pgo =
Average Pgg =

AVG. =

+0

-15

+4
-1

+11

+1
+2
-6
+0

Same as case 11 above
except train on

turntable data only

13. [LPEELE.FLIGHT.FILES]LPTRAIN_BL_ANG.PRM

Average Pgg =
Average Peg =
Average Peg =
Average Pgc =
Average P¢g =
Average Pec =
Average Pgg =
Average Pgg =

AVG. =

+7

-10
+14

+9

One sector only,
train on turntable data
at same angles as

flight training data
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14, [LPEELE.FLIGHT.FILES]LPTRAIN_BL_ANG_TT.PRM
Average Poc = +2

Average Pgg = -15

Average Pgg = +11 Same as case 13 above except
Average Pec = +10 train on only turntable data
Average Peg = +4

Average Pec = +0

Average Pge = +4

Average Pgg = -4

AVG. = +2

15. [LPEELE.FLIGHT.FILES]LPTRAIN_BL_ANG_TT.PRM

(Average Pgg = + 2)

Average Peg = -15

Average Pgc = +11

Average Pge = +10 Train on turntable data at
Average Pgc = +4 flight training angles -
Average Pec = +0 use one sector only
Average Pgc = +4

Average Pgc = -4

AVG. = +2

16. [LPEELE.FLIGHT.FILES]LPTRAIN_BL.PRM

Average Pgg = +4

Average Pgc = -12 Like baseline classifier except
Average Pcec = +14 use only one sector

Average Pgg = +14

Average Pec = +9

Average Pgg = +4

Average Pgc = +6

Average Pgg = +2

AVG. = +5
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17. [LPEELE.FLIGHT.FILES]LPTRAIN_BL_TT.PRM

Average Pgg =
Average Pgc =
Average Pgg =
Average Pec =
Average Pgc =
Average Pgg =
Average Peg =
Average P¢g =

AVG. =

+1

Use one sector only,

train on all turntable only

18. [LPEELE.FLIGHT.FILES]TRAIN_BL_TT.PRM

Average Pgc =
Average Pgc =
Average Pgc =
Average Pgc =
Average Pgc =
Average Pgc =
Average Pge =
Average Pgc =

AVG. =

+3
-18
+4
+3
+12
+3
+5
-3

+1

Baseline except

train on all turntable only

19. [LPEELE.FLIGHT.FILESJLPTRAIN_W42.PRM

Average Pgc =
Average P¢c =
Average Pgg =
Average Pgc =
Average Pgc =
Average Peg =
Average Pgc =
Average Pgo =

AVG. =

+1
-10
+14
+13
+13
+5
+3

+5

One sector only
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20. [LPEELE.FLIGHT.FILES]LPTRAIN_W48.PRM

Average Pgg = +4
Average Poc = -15 One sector only
Average P¢g = +15
Average Pec = +14
Average Pgg = +10
Average Pgg = +4
Average Pgg = +4
Average Pgc = +2
AVG. = +5

21. [LPEELE.FLIGHT.FILES]LPTRAIN_W42_REG.PRM

(Average Pcc = + 2)

Average Pgg = -10

Average P¢c = +13 Second registration used,
Average Pgg = +10 only one sector

Average Pgc = +13

Average Pgg = +5

Average Pcc = +3

Average Pgc = +0

AVG. = +5

22. [LPEELE.FLIGHT.FILES]PROFILE.PRM

Average P¢g = +8

Average Pgg = -10

Average Pcc = +1 Profile matching baseline features except
Average Pgc = +5 took 4th root, then normed by the
Average Pgc = +6 square root of sum squares

Average Pgc = +0

Average Pgg = +5

Average Pgc = -3

AVG. = +2
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23. [LPEELE.FLIGHT.FILES]PROFILE.PRM
CLASS 1 HAS A +0.001 BIAS

Average Pgg = +9

Average Pgc = -15

Average Pgc = +14

Average Pgc = +16 Same as case 22 except class 1
Average Pgs = +5 has a bias of +0.001

Average Pgc = +2

Average Pgc = +7

Average Pgc = +2

AVG. = +5

24. [LPEELE.FLIGHT.FILES]PROFILE.PRM
CLASS 1 HAS +0.0007 BIAS

Average Pgc = +12

Average Pgg = -14

Average Pgc = +11

Average Pgg = +15 Same as case 22 except class 1
Average Pgc = +8 has a bias of 0.0007

Average Pgg = +1

Average Pgc = +8

Average Pgg = +1

AVG. = +5

25. [LPEELE.FLIGHT.FILES]PROFILE_TT.PRM
CLASS 1 BIAS IS +0.001, TRAIN ON TURNTABLE ONLY

Average Pgo = +9

Average Pge = -17

Average Pgc = +11 Same as case 23
Average Pgg = +8 except trained on
Average P¢c = +6 turntable only
Average Pgg = +1

Average Pgc = +6

Average Pgc = -2

AVG. = +3
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26. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM - USUAL BIAS WEIGHTS ALSO USED PROFILE.PRM, FUSE
CLASSIFIER - PM CLASS 1 HAS +0.001 BIAS

Average Pgg = +9
Average Pgg = -1
Average Pgg = +17
Average Pgg = +18
Average Pgg = +11
Average Pgc = +3
Average Pgc = +6
Average Pgg = +3
AVG. = +7

Fuse classifier - fuse criterion

is to use quadratic with usual

weights unless (BDNEXT-BDMIN) <2 ;
then use profile matching.

Currently there is no logic in the
branching test for dealing with 2

target types being in the same class

27. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM
ALSO USED PROFILE.PRM, FUSE CLASSIFIER

Average Pgg = +10
Average Pgc = -12
Average Pgg = +17
Average P¢g = +18
Average Pgc = +10
Average Pgg = +2
Average Pgc = +9
Average Pgg = +4
AVG. = +7

Same as case 26 except

<2 becomes <2.8

This will use quad approximately 1/2 time

28. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM - USUAL BIAS WEIGHTS, ALSO USED PROFILE.PRM, FUSE
CLASSIFIER - PM CLASS 1 HAS +.001 BIAS

Average Pgc = +8
Average Pgg = -11
Average Pgg = -+17
Average Pgg = +18
Average Pgg = +11
Average Pgg = +3
Average Pgc = +8
Average Pgc = +4
AVG. = +7

Uses PM (not QD) if
2500*PM_DELTA is>
Q_DELTA; 2500 is
approximately the ratio of

the medians.
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29. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM - USUAL BIAS WEIGHTS, ALSO USES PROFILE.PRM, FUSE
CLASSIFIER - PM CLASS 1 HAS +.001 BIAS

Average P = +8

Average Pgc = -1 Selects class based on
Average Pgg = +18 minimum across classes of
Average P¢c = +19 (QUAD BD + [(1-PM#)*2500})
Average Pgc = +12 where the quad BD and the
Average Pgc = +4 PM# are from the same class
Average Pgc = +7

Average Pgc = +3

AVG. = +8(+7.5)

30. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM FUSED WITH PROFILE MATCHING WITH CL1+0.001
Fusion is by minimum of (QD + 2500(1-PM))

Baseline classifier gains

Sectors are: Sect1 if O/E > 2.

Sect2 if not1 and std <2.95

Sect3 if not1 and std >2.95

Extra biases are Sect1&2 CL3-1; Sect3 CL1-1, CL2-2

This classifier has the best M1 and M2 |

Average Pgc = +8
Average Pgc = -9
Average Pgc = +18
Average Pgg = +20
Average Pgc = +13
Average Pgc = +4
Average Pgg = +9
Average Pgc = +4
AVG = +8(+8.4)

Average of merged class 3 Pgc values = - 12.2
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31. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM & PROFILE.PRM

Sectors are: Sectt if O/E > 2. [PM (not fusion) used in sect], Sect2 if not1 and std < 2.95, Sect3 if not1 and std >
2.95; baseline classifier gains; extra quadratic biases are Sect2 CL38&4-1, CL2+2; Sect3 CL1-1, CL2-2; profile
matching biases are CL1+.001, CL3+.0005; BD(i) = Q(i) and BB(i) = (1 -PM(i))*2500 fori =1, ..., 4

Then BD(3) = min(BD(3),BD(4)) & BB(3) = min(BB(3),BB(4)) [which forces CL4—>CL3 to combine the two]; fuse by
minimum of 3 classes BD(1)+BB(1)-.5, BD(2)+BB(2) , BD(3)+BB(3)-1

This dlassifier | class 3 Pec.and qood M1 & M2 resul

Average Pgg = +7
Average Pcc = -7
Average Pgg = +12
Average Pgc = +14
Average Pgg = +14
Average Pcc = +3
Average Pgg = +9
Average Pgg = +5
AVG. = +7

Average of merged class 3 Pgg values = + 0.3

32. DIAGONAL COVARIANCE Q - 90 SECTORS - [POOR RESULTS]

33. DIAGONAL COVARIANCE Q - 90 SECTORS - **.25 NORMALIZATION {LPEELE.FLIGHT.FILES]DIAGTRAIN.PRM

Class 1 has a- 5 bias

Average Pgg = +11

Average Pgc = -12 Classifier assumes independence
Average Pgg = +5 which is clearly not true

Average Pgg = +14

Average P¢g = +10 Baseline lines / SSQ-all

Average Pgg = +3 then **0.25

Average Pgc = +3

Average Pgc = -3

AVG. = +4
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34. [LPEELE.FLIGHT.FILES]LPTRAIN_ANGSECT.PRM

3 sectors based on even st.dev. statistic - even f(i)/|f| classifier gains altered slightly for 3 sector st.dev.

distributions, baseline classifier gains plus alterations

Average Pgg = +4
Average Pgg = -10
Average P¢g = +13
Average Pgo = +14
Average Pgg = +10
Average Pgg = +2
Average Pgg = +11
Average Pgg = +3
AVG. = +6

3 sectors A,B,C are

Aif std <2.65
Bif2.65<std<2.95

Cif 2.95 > std

A bias is CL3-1

C biases are CL1-1, CL2-2

35. [LPEELE.FLIGHT.FILES]LPTRAIN_ANGSECT.PRM

Usual weights plus alterations at right

Average Pgg = +3
Average Pgg = -10
Average Pgc = +11
Average Pcc = +12
Average Pgc = +10
Average Pgg = +3
Average Pgc = +11
Average Pge = +1
AVG. = +5

Sect 1, CL38&4-1
Sect2, CL3&4-1
Sect 3, CL1-1, CL2-2

36. {LPEELE.FLIGHT.FILES]LPTRAIN_ANGSECT2.PRM

Baseline classifier gains

Average Pgg = +5
Average Pgg = -7
Average Pc;; = +13
Average Pgg = +15
Average Pgg = +11
Average Pgc = +3
Average Pgc = +10
Average Pgg = +0
AVG. = +6

Sect! IF O/E>2.

O/W Sect2 IF std <2.95
O/W Sect3 IF std>2.95
Sect3 CL1-1,CL2-2
Sect182 CL3-1
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37. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM

Average Pgc =
Average Pg¢ =
Average Pgc =
Average Pgc =
Average Pgg =
Average P =
Average Pgc =
Average Pgc =

AVG. =

+1
-9
+13
+14
+12
+2
+8
-1
+5

D2 Wavelet 42

Usual 3 std branches
Usual biases in addition
to original BL biases

(see below for details)

38. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM

Average Pgc =
Average Pgc =
Average P¢c =
Average Pgg =
Average Pgc =
Average Pgg =
Average Pgc =
Average Pgc =

AVG. =

+3
-6
+14
+17
+14
+4
+7

+7

D2 Wavelet 42 & BL biases
Sect1 IFO/E>2.0

Sect2 IF NOT1 & std <2.95
Sect3 IF NOT1 & std >2.95
Sect1&2 CL3-1

Sect3 CL1-1,CL2-2
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METHOD 2 SCORING RESULTS

39. BASELINE CLASSIFIER GAINS

Average Pgg = +6
Average P¢c = -7
Average Pgg = +3
Average Pgg = +6
Average Pgc = +10
Average Pgc = +1
Average Pgc = +5
Average Pgc = -2
AVG. = +3(+2.8)

Sample size weighted average of merged class 3 Pg¢ values = - 0.2

40. [LPEELE.FLIGHT.FILESJTRAIN_BL_ANG_TT.PRM

Average Pgg = +5

Average Pgc = -5 Turntable data for training
Average Pgg = +10 using only those aspects
Average Pqc = +6 of flight training data
Average Pgg = +9

Average Pgg = +3

Average Pgc = +1

Average Pgc = -5

AVG. = +3

41, [LPEELE.FLIGHT.FILES]TRAIN_BL_ANG.PRM

Average Pgg = +6

Average Pgg = -8 Turntable training data at
Average Pgc = +6 flight training aspects
Average Pgg = +3 plus flight training data
Average Pgc = +11

Average Pgg = +2

Average Pgc = +5

Average Pgc = -4

AVG. = +3
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42. BASELINE CLASSIFIER GAINS, THEN MERGED CLASS 3 FORCED INTO CLASS 1

Average Pgc = +11
Average Pgc = -4
Average Pgg = +26
Average Pgc = +17
Average Pgc = +15
Average Pgg = +11
Average Pgc = +1
Average Pgc = -3
AVG. = +9

This illustrates why Pg¢ values should
not be averaged based on

relative sample sizes. (Thatis,

since there were relatively few

class 3 test cases, this score

looks good.)

43. CLASSIFIER GAINS: 0.00 0.00 0.00 0.00

Average Pgg = -6
Average Pgg = -16
Average Pgg = -9
Average Pgc = -1
Average Pge = +5
Average Pgc = -4
Average Pcc = +2
Average Pgc = -6
AVG. = -4

44. [LPEELE.FLIGHT.FILES]TRAIN_W48.PRM NO WEIGHTS (ALL ZERO

Average Pgc = -9
Average Pgg = -156
Average Pgc = 1
Average Pgg = +1
Average Pgc = +8
Average Pgg = +1
Average Pgg = +1
Average Pgc = -1
AVG. = -2
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45, [LPEELE.FLIGHT.FILES]TRAIN_W48.PRM WEIGHTS = BL WEIGHTS

Average Peg = +3
Average Pgg = -6
Average Pgg = +8
Average Pec = +9
Average Pgg = +11
Average Pgg = +4
Average Pgg = +5
Average Peg = -1
AVG. = +4

46. [LPEELE.FLIGHT.FILES]TRAIN_W26.PRM (**.25)

Weights = baseline weights

Average Pgc = -4
Average Pgg = -10
Average Pec = -1
Average Pgc = +5
Average Pgg = +8
Average Pgg = -3
Average Pgg = +0
Average Peg = -2
AVG.=-1

47. [LPEELE.FLIGHT.FILES]TRAIN_W42_FROOT.PRM (**.25)

Weights = baseline weights

Average Pgg = +4
Average Pgc = -6
Average Pcg = +4
Average Pgc = +8
Average Pgc = +11
Average Pgg = +2
Average Peg = +3
Average Pgg = -1
AVG. = +3
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48, [LPEELE.FLIGHT.FILES]TRAIN_W42.PRM

Weights = Baseline Average Pgg = + 2

Average Pgc = -7
Average Pgc = +5
Average Pgc = +8
Average Pgc = +12
Average Pgc = +3
Average Pge = +6
Average Pgc = +1
AVG = +4

49. [LPEELE.FLIGHT.FILES]TRAIN_W42_TT_ONLY.PRM

Train on TT only, weights = baseline

Average Pgo = -14
Average Pgc = -14
Average Pgg = -5
Average Pgc = +1
Average Pgc = +13
Average Pgc = +0
Average Pgc = +2
Average P¢c = -5
AVG. = -2

50. [LPEELE.FLIGHT.FILES]TRAIN_W42_F_ONLY.PRM

Train on flight only, weights = baseline

Average Pgc = +8
Average Pgg = -2
Average Pgg = +16
Average Pgc = +7
Average Pgg = +12
Average Pgc = +8
Average Pgg = +5
Average P = -9
AVG. = +6

This improvement is a fiction
due to sample test weights -
results are worse in equal

P¢c class weighting (see 9)

75




51, [LPEELE.FLIGHT.FILES]TRAIN_BL_SP_INDEP.PRM

Average Peg = +5

Average Pcc = -7 independent clutter addition to
Average Pgg = +4 turntable data for training
Average Pgg = +5

Average Pgg = +8

Average Pec = +1

Average Pgg = +3

Average Pgc = -3

AVG. = +2

52. [LPEELE.FLIGHT.FILES]TRAIN_BL_SP.PRM

Average Pgg = +3

Average Pgg = -7

Average Pcc = +7 Dependent clutter addition
Average Pgg = +9 to turntable data for training
Average Pec = +9

Average Pgg = +1

Average Pec = +5

Average Pgg = -2

AVG. = +3

53. [LPEELE.FLIGHT.FILES]TRAIN_BL_SP_TT.PRM

Average Pgc = -3

Average Pgc = -12

Average Pec = +1 Same as case 52 except
Average Pgg = -1 train only on turntable data
Average Pgg = +11

Average Peg = +0

Average Pgg = +2

Average Pgg = -5

AVG. = -1
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54. [LPEELE.FLIGHT.FILES]LPTRAIN_BL_ANG.PRM

Average Pcc = + 6

Average Pgg = -6 This is trained on flight
Average Pgg = +14 training files and turntable
Average Pgc = +10 training data from similar
Average Pgg = +7 aspects - uses only 1 sector
Average Pgg = -1

Average Pgc = +7

Average Pgg = +3

AVG. = +5

55. [LPEELE.FLIGHT.FILES]LPTRAIN_BL_ANG_TT.PRM

Average Pgg = -2

Average Pgg = -6 Same as case 54 except
Average Pge = +10 trained only on

Average P = +10 turntable data at
Average Pgc = +5 flight training angles
Average Pgg = -1

Average Pgg = +3

Average P¢c = -3

AVG. = +2

56. [LPEELE.FLIGHT.FILES]LPTRAIN_BL.PRM

Average Pgg = +2
Average Pge = -5 One sector only
Average Pgg = +13
Average Pgg = +14
Average Peg = +6
Average Pgc = +0
Average Pgc = +4
Average Pgc = +2
AVG. = +5
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57. [LPEELE.FLIGHT.FILES]LPTRAIN_BL_TT.PRM

Average Pgc = -4

Average Pec = -7 Train on turntable only
Average Pgc = +8 Use only one sector
Average Pge = +11

Average Pgg = +6

Average Pgc = -3

Average Pgc = +2

Average Pcc = -3

AVG. = +1

58. [LPEELE.FLIGHT.FILES]TRAIN_BL_TT.PRM

Average Pgg = -5
Average Pgc = -10 Baseline
Average Pgg = +1 Train on turntable only
Average Pgg = +3
Average Pcc = +9
Average Pgg = -1
Average Pgg = +4
Average Pgc = -2
AVG. = +0
59. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM
Average Pgc = -1
Average Pgc = -4 One sector only
Average Pgg = +12
Average Pgg = +13
Average Pgc = +9
Average Pgc = -1
Average Pec = +3
Average Pgg = +1
AVG. = +4
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60. [LPEELE.FLIGHT.FILES]LPTRAIN_W48.PRM

Average Pgc =
Average Pgg =
Average Pgc =
Average Pee =
Average Pgc =
Average Peg =
Average Pcc =
Average Pgc =

AVG. =

+3
-6
+14
+14
+7
+0
+5

+5

One sector only

61. [LPEELE.FLIGHT.FILES]LPTRAIN_W42_REG.PRM

Average Pgc =
Average Pgc =
Average Pgc =
Average Pgg =
Average Pgg =
Average Pgg =
Average Pgc =
Average Pgc =

AVG. =

-1
-4
+11
+10
+10

+3

+1

+4

Second registration used,

one sector only

62. [LPEELE.FLIGHT.FILES]PROFILE.PRM

Average Pgc =
Average Pgg =
Average Pgc =
Average Pgg =
Average Pgc =
Average Peg =
Average Pgg =
Average Pgg =

AVG. =

6

Profile-match
Profile match baseline except used
4th root then normed by sart of

sum of squares
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63. [LPEELE.FLIGHT.FILES]PROFILE.PRM
Class 1 has a bias of +0.001

Average Pgc = +8

Average Pgg = -8

Average Pgc = +14 Same as case 62 except
Average Pgc = +16 for the +0.001 class 1 bias
Average Pgc = +8

Average Pgg = +0

Average Pgc = +7

Average Pgc = +2

AVG. = +6

64. [LPEELE.FLIGHT.FILES]PROFILE.PRM
Class 1 has +0.0007 bias

Average P¢c = +7

Average Pec = -10

Average Pgc = +9 Same as case 62 except
Average Pec = +15 class 1 has a +0.0007 bias
Average Pgc = +5

Average Pge = -4

Average Pgg = +6

Average Pgc = +0

AVG. = +4

65. [LPEELE.FLIGHT.FILES]PROFILE_TT.PRM, CLASS 1 BIAS IS +.001, TRAIN ON TURNTABLE ONLY

Average Pgc = +5

Average Pgc = -11

Average Pgg = +10 Same as case 63 except
Average Pgc = +8 train on turntable only
Average Pgc = +8

Average Pgc = -1

Average Pgg = +5

Average Pgc = -2

AVG. = +3
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66. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM - USUAL BIAS WEIGHTS, ALSO USES PROFILE.PRM, FUSE
CLASSIFIER
PM class 1 has +0.001 bias

Average P = +9

Average P¢g = -4 Fusion classifier - fusion criterion is
Average Pgg = +16 to use quadratic with usual weights
Average Pgc = +19 unless (BDNEXT - BDMIN) <2 ; then
Average Pgc = +10 use profile matching. Currently
Average Pgc = +0 there is no logic in the branching
Average Pgc = +6 test for handling CL3 & ClL4 merge
Average Pgg = +5

AVG. = +8

67. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM, ALSO USES PROFILE.PRM, FUSE CLASSIFIER

Average Peg = +9

Average Pgo = -5 Same as case 66 except
Average Pgc = +16 <2ischanged to <2.8

Average Pgg = +18

Average Pgg = +9 This will use quadratic classifier
Average Pgg = +0 approximately 1/2 of the time
Average Pgc = +8

Average Pgg = +5

AVG. = +8

68. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM
USUAL BIAS WEIGHTS ALSO USES PROFILE.PRM, FUSE CLASSIFIER,
Class 1 has +0.001 bias

Average Pgc = +8

Average Pgc = -3 Uses PM (not QD) if
Average Pee = +16 2500"PM_DELTA
Average Pgc = +18 is>Q_DELTA,

Average Pgc = +10 2500 is approximately the
Average Pgg = +0 ratio of median deltas
Average Peg = +8 PM_DELTA/Q_DELTA
Average Pgc = +5

AVG. = +8
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69. [LPEELE.FLIGHT.FILES]LPTRAIN_W42.PRM -

USUAL BIAS WEIGHTS ALSO USES PROFILE.PRM, FUSE CLASSIFIER

Class 1 has +0.001 bias

Average Pgg = +9

Average Pgc = -3 Selects class based on
Average Pgg = +18 minimum across classes of
Average Pgg = +19 (QUAD BD + [(1-PM#)*2500]))
Average Pgg = +12 where the quad BD and the
Average Pgg = +3 PM# are from the same class
Average Pgg = +8

Average Pgg = +5

AVG. = +9(+89)

70. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM FUSED WITH PROFILE MATCHING WITH T+0.001

Fusion is by minimum of (Q + 2500(1-PM))

Baseline classifier gains

Sectors are: Sect1 if O/E > 2.

Sect2 if not1 and std < 2.95

Sect3 if not1 and std > 2.95

Extra biases are Sect1&2 CL3-1, Sect3 CL1-1, CL2-2
This classifi he best M1 and M2 it

Average Peg = +8
Average Pgg = -1
Average Pgg = +17
Average Pgg = +20
Average Pgg = +12
Average Pgc = +2
Average Pgg = +9
Average Pgg = +5
AVG. = +9(+9.0)

Sample size weighted average of merged class 3 Pgg values =- 12.8
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71. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM & PROFILE.PRM ( FUSION) SECTORS ARE: SECT1 IF
O/E>2.

[PM (not fusion) used in Sect3], Sect? if not1 and std < 2.95, Sect3 if not1 and std > 2.95, baseline classifier gains,
extra quadratic biases are Sect2 CL3&4-1, CL2+2; Sect3 CL1-1, CL2-2; profile matching biases are CL1+0.001,
CL3+0.0005; BD(i) = QD(i) and BB(i) = (1 -PM(i))*2500 for i =1,...,4; then BD(3) = min(BD(3), BD(4)) & BB(3) =
min(BB(3), BB(4)) [merges CL4 into CL3]; fuse by min of 3 classes BD(1)+BB(1)-0.5, BD(2)+BB(2), BD(3)+BB(3)-1. .
This classifier | | class 3 P | | M1 & M2 i

Average P¢c = +4
Average Pgg = -2
Average Pgg = +10
Average Pgc = +14
Average Pgg = +10
Average Pgc = -1
Average Pgg = +8
Average Pgg = +5
AVG. = +6

Sample size weighted average of merged class 3 P¢c values = -0.2

72. DIAGONAL COVARIANCE Q - 90 SECTORS [POOR RESULTS]

73. DIAGONAL COVARIANCE Q - 90 SECTORS - **.25 NORMALIZATION [BETTER, NOT GOOD]

Below resuits have class 1 bias - 5

Average Pgc = +3
Average Pgc = -7
Average Pgc = +2
Average P¢c = +14
Average P¢c = +7
Average P¢g = -2
Average Pgg = +1
Average Pgc = -4
AVG. = +2
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74. [LPEELE.FLIGHT.FILES]LPTRAIN_ANGSECT.PRM — 3 SECTORS BASED ON EVEN ST.DEV. STATISTIC
(EVEN F(l)/|F|) CLASSIFIER GAINS ALTERED SLIGHTLY FOR 3 SECTOR ST.DEV. DIST.'S, BASELINE CLASSIFIER
GAINS PLUS ALTERATIONS

Average Pcc = +2 Three sectors A, B, C are
Average Pgg = -3 Aif std<2.65

Average Pgc = +12 Bif 2.65 <std<2.95
Average Pgg = +14 Cif2.95>std

Average Pgg = +8 A bias is CL3-1

Average Pgc = -1 C biases are CL1-1, CL2-2
Average Pgg = +9

Average Pcc = +3

AVG. = +6

75. [LPEELE.FLIGHT.FILESJLPTRAIN_ANGSECT.PRM
USUAL WEIGHTS PLUS ALTERATIONS AT RIGHT

Average Pgc = -1 Sectt, CL3&4-1
Average Pgc = -3 Sect 2, CL3&4-1
Average Pgc = +10 Sect3, CL1-1
Average Pcc = +12 Cl2-2

Average Pgc = +8

Average Pcc = -1

Average Pcg = +8

Average Pgg = +1

AVG.=+4

76. [LPEELE.FLIGHT.FILES]LPTRAIN_ANGSECT2.PRM

BASELINE CLASSIFIER GAINS
Average Pgg = -1
Average Pec = -2 Sect1 if O/E > 2.
Average Pgc = +11 Otherwise Sect2 if std <2.95
Average Pgg = +15 or Sect3 if std > 2.95
Average Pg = +8 Sect3 biases CL1-1, CL2-2
Average Pgc = -1 Sect1&2 CL3-1
Average Pgc = +7
Average Pgg = +0
AVG. = +5
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77. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM

Average Pgg =
Average Pgc =
Average Pgc =
Average Pcc =
Average Pgg =
Average Pcc =
Average Pge =
Average Pgc =

AVG. =

-3
-5
+11
+14
+10
-2
+7
+0

+4.0

D2 Wavelet42
Usual 3 std branches
Usual biases in addition to

the original BL biases

78. [LPEELE.FLIGHT.FILES]LPTRAIN42_ANGSECT.PRM

Average Pgc =
Average Pgg =
Average Pgc =
Average Pgc =
Average Pgg =
Average Pgg =
Average Pgc =
Average Pgg =

AVG. =

+0
-2
+12
+16
+10
+0
+7
-1
+5

D2 Wavelet42 & BL biases
Sect1 if O/L.>2.0

Sect2 if not1 & std <2.95
Sect3 if not1 & std >2.95
Sect182 CL3-1

Sect3 CL1-1, ClL2-2
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